ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04339
11
41

Depth2Action: Exploring Embedded Depth for Large-Scale Action Recognition

15 August 2016
Yi Zhu
Shawn D. Newsam
ArXivPDFHTML
Abstract

This paper performs the first investigation into depth for large-scale human action recognition in video where the depth cues are estimated from the videos themselves. We develop a new framework called depth2action and experiment thoroughly into how best to incorporate the depth information. We introduce spatio-temporal depth normalization (STDN) to enforce temporal consistency in our estimated depth sequences. We also propose modified depth motion maps (MDMM) to capture the subtle temporal changes in depth. These two components significantly improve the action recognition performance. We evaluate our depth2action framework on three large-scale action recognition video benchmarks. Our model achieves state-of-the-art performance when combined with appearance and motion information thus demonstrating that depth2action is indeed complementary to existing approaches.

View on arXiv
Comments on this paper