ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.07973
11
176

Linking Image and Text with 2-Way Nets

29 August 2016
Aviv Eisenschtat
Lior Wolf
ArXivPDFHTML
Abstract

Linking two data sources is a basic building block in numerous computer vision problems. Canonical Correlation Analysis (CCA) achieves this by utilizing a linear optimizer in order to maximize the correlation between the two views. Recent work makes use of non-linear models, including deep learning techniques, that optimize the CCA loss in some feature space. In this paper, we introduce a novel, bi-directional neural network architecture for the task of matching vectors from two data sources. Our approach employs two tied neural network channels that project the two views into a common, maximally correlated space using the Euclidean loss. We show a direct link between the correlation-based loss and Euclidean loss, enabling the use of Euclidean loss for correlation maximization. To overcome common Euclidean regression optimization problems, we modify well-known techniques to our problem, including batch normalization and dropout. We show state of the art results on a number of computer vision matching tasks including MNIST image matching and sentence-image matching on the Flickr8k, Flickr30k and COCO datasets.

View on arXiv
Comments on this paper