ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.08517
35
125
v1v2v3v4 (latest)

Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review

30 August 2016
Haifeng Zhang
Yevgeniy Vorobeychik
    AI4CE
ArXiv (abs)PDFHTML
Abstract

Innovation diffusion has been studied extensively in a variety of disciplines, including sociology, economics, marketing, ecology, and computer science. Traditional literature on innovation diffusion has been dominated by models of aggregate behavior and trends. However, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent heterogeneity and enables fine-grained modeling of interactions mediated by social and geographic networks. While most ABM work on innovation diffusion is theoretical, empirically grounded models are increasingly important, particularly in guiding policy decisions. We present a critical review of empirically grounded agent-based models of innovation diffusion, developing a categorization of this research based on types of agent models as well as applications. By connecting the modeling methodologies in the fields of information and innovation diffusion, we suggest that the maximum likelihood estimation framework widely used in the former is a promising paradigm for calibration of agent-based models for innovation diffusion. Although many advances have been made to standardize ABM methodology, we identify four major issues in model calibration and validation, and suggest potential solutions. Finally, we discuss open problems that are critical for the future development of empirically grounded agent-based models of innovation diffusion that enable reliable decision support for stakeholders.

View on arXiv
Comments on this paper