ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.01693
16
11

Making a Case for Learning Motion Representations with Phase

6 September 2016
S. Pintea
J. C. V. Gemert
ArXivPDFHTML
Abstract

This work advocates Eulerian motion representation learning over the current standard Lagrangian optical flow model. Eulerian motion is well captured by using phase, as obtained by decomposing the image through a complex-steerable pyramid. We discuss the gain of Eulerian motion in a set of practical use cases: (i) action recognition, (ii) motion prediction in static images, (iii) motion transfer in static images and, (iv) motion transfer in video. For each task we motivate the phase-based direction and provide a possible approach.

View on arXiv
Comments on this paper