ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.03666
74
0

A Greedy Algorithm to Cluster Specialists

13 September 2016
Sébastien Arnold
ArXiv (abs)PDFHTML
Abstract

Several recent deep neural networks experiments leverage the generalist-specialist paradigm for classification. However, no formal study compared the performance of different clustering algorithms for class assignment. In this paper we perform such a study, suggest slight modifications to the clustering procedures, and propose a novel algorithm designed to optimize the performance of of the specialist-generalist classification system. Our experiments on the CIFAR-10 and CIFAR-100 datasets allow us to investigate situations for varying number of classes on similar data. We find that our \emph{greedy pairs} clustering algorithm consistently outperforms other alternatives, while the choice of the confusion matrix has little impact on the final performance.

View on arXiv
Comments on this paper