ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.03892
22
99

VIPLFaceNet: An Open Source Deep Face Recognition SDK

13 September 2016
Xin Liu
Meina Kan
Wanglong Wu
Shiguang Shan
Xilin Chen
    CVBM
    VLM
ArXivPDFHTML
Abstract

Robust face representation is imperative to highly accurate face recognition. In this work, we propose an open source face recognition method with deep representation named as VIPLFaceNet, which is a 10-layer deep convolutional neural network with 7 convolutional layers and 3 fully-connected layers. Compared with the well-known AlexNet, our VIPLFaceNet takes only 20% training time and 60% testing time, but achieves 40\% drop in error rate on the real-world face recognition benchmark LFW. Our VIPLFaceNet achieves 98.60% mean accuracy on LFW using one single network. An open-source C++ SDK based on VIPLFaceNet is released under BSD license. The SDK takes about 150ms to process one face image in a single thread on an i7 desktop CPU. VIPLFaceNet provides a state-of-the-art start point for both academic and industrial face recognition applications.

View on arXiv
Comments on this paper