20
14

Fractional order statistic approximation for nonparametric conditional quantile inference

Abstract

Using and extending fractional order statistic theory, we characterize the O(n1)O(n^{-1}) coverage probability error of the previously proposed confidence intervals for population quantiles using LL-statistics as endpoints in Hutson (1999). We derive an analytic expression for the n1n^{-1} term, which may be used to calibrate the nominal coverage level to get O(n3/2[log(n)]3)O\bigl(n^{-3/2}[\log(n)]^3\bigr) coverage error. Asymptotic power is shown to be optimal. Using kernel smoothing, we propose a related method for nonparametric inference on conditional quantiles. This new method compares favorably with asymptotic normality and bootstrap methods in theory and in simulations. Code is available from the second author's website for both unconditional and conditional methods, simulations, and empirical examples.

View on arXiv
Comments on this paper