ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02431
96
15

ResearchDoom and CocoDoom: Learning Computer Vision with Games

7 October 2016
Aravindh Mahendran
Hakan Bilen
J. F. Henriques
A. Vedaldi
ArXiv (abs)PDFHTML
Abstract

In this short note we introduce ResearchDoom, an implementation of the Doom first-person shooter that can extract detailed metadata from the game. We also introduce the CocoDoom dataset, a collection of pre-recorded data extracted from Doom gaming sessions along with annotations in the MS Coco format. ResearchDoom and CocoDoom can be used to train and evaluate a variety of computer vision methods such as object recognition, detection and segmentation at the level of instances and categories, tracking, ego-motion estimation, monocular depth estimation and scene segmentation. The code and data are available at http://www.robots.ox.ac.uk/~vgg/research/researchdoom.

View on arXiv
Comments on this paper