ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.03783
19
56

Change-point detection in high-dimensional covariance structure

12 October 2016
V. Avanesov
N. Buzun
ArXivPDFHTML
Abstract

In this paper we introduce a novel approach for an important problem of break detection. Specifically, we are interested in detection of an abrupt change in the covariance structure of a high-dimensional random process -- a problem, which has applications in many areas e.g., neuroimaging and finance. The developed approach is essentially a testing procedure involving a choice of a critical level. To that end a non-standard bootstrap scheme is proposed and theoretically justified under mild assumptions. Theoretical study features a result providing guaranties for break detection. All the theoretical results are established in a high-dimensional setting (dimensionality p≫np \gg np≫n). Multiscale nature of the approach allows for a trade-off between sensitivity of break detection and localization. The approach can be naturally employed in an on-line setting. Simulation study demonstrates that the approach matches the nominal level of false alarm probability and exhibits high power, outperforming a recent approach.

View on arXiv
Comments on this paper