ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.04181
16
159

Removal of Batch Effects using Distribution-Matching Residual Networks

13 October 2016
Uri Shaham
Kelly P. Stanton
Jun Zhao
Huamin Li
K. Raddassi
Ruth R. Montgomery
Y. Kluger
ArXivPDFHTML
Abstract

Sources of variability in experimentally derived data include measurement error in addition to the physical phenomena of interest. This measurement error is a combination of systematic components, originating from the measuring instrument, and random measurement errors. Several novel biological technologies, such as mass cytometry and single-cell RNA-seq, are plagued with systematic errors that may severely affect statistical analysis if the data is not properly calibrated. We propose a novel deep learning approach for removing systematic batch effects. Our method is based on a residual network, trained to minimize the Maximum Mean Discrepancy (MMD) between the multivariate distributions of two replicates, measured in different batches. We apply our method to mass cytometry and single-cell RNA-seq datasets, and demonstrate that it effectively attenuates batch effects.

View on arXiv
Comments on this paper