ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.05551
20
5

Weighted Positive Binary Decision Diagrams for Exact Probabilistic Inference

18 October 2016
Giso H. Dal
Peter J.F. Lucas
    TPM
ArXiv (abs)PDFHTML
Abstract

Recent work on weighted model counting has been very successfully applied to the problem of probabilistic inference in Bayesian networks. The probability distribution is encoded into a Boolean normal form and compiled to a target language, in order to represent local structure expressed among conditional probabilities more efficiently. We show that further improvements are possible, by exploiting the knowledge that is lost during the encoding phase and incorporating it into a compiler inspired by Satisfiability Modulo Theories. Constraints among variables are used as a background theory, which allows us to optimize the Shannon decomposition. We propose a new language, called Weighted Positive Binary Decision Diagrams, that reduces the cost of probabilistic inference by using this decomposition variant to induce an arithmetic circuit of reduced size.

View on arXiv
Comments on this paper