ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.07717
28
267

Distributed and parallel time series feature extraction for industrial big data applications

25 October 2016
Maximilian Christ
A. Kempa-Liehr
M. Feindt
    AI4TS
ArXivPDFHTML
Abstract

The all-relevant problem of feature selection is the identification of all strongly and weakly relevant attributes. This problem is especially hard to solve for time series classification and regression in industrial applications such as predictive maintenance or production line optimization, for which each label or regression target is associated with several time series and meta-information simultaneously. Here, we are proposing an efficient, scalable feature extraction algorithm for time series, which filters the available features in an early stage of the machine learning pipeline with respect to their significance for the classification or regression task, while controlling the expected percentage of selected but irrelevant features. The proposed algorithm combines established feature extraction methods with a feature importance filter. It has a low computational complexity, allows to start on a problem with only limited domain knowledge available, can be trivially parallelized, is highly scalable and based on well studied non-parametric hypothesis tests. We benchmark our proposed algorithm on all binary classification problems of the UCR time series classification archive as well as time series from a production line optimization project and simulated stochastic processes with underlying qualitative change of dynamics.

View on arXiv
Comments on this paper