ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.10060
30
13

Optimization for Large-Scale Machine Learning with Distributed Features and Observations

31 October 2016
A. Nathan
Diego Klabjan
ArXivPDFHTML
Abstract

As the size of modern data sets exceeds the disk and memory capacities of a single computer, machine learning practitioners have resorted to parallel and distributed computing. Given that optimization is one of the pillars of machine learning and predictive modeling, distributed optimization methods have recently garnered ample attention in the literature. Although previous research has mostly focused on settings where either the observations, or features of the problem at hand are stored in distributed fashion, the situation where both are partitioned across the nodes of a computer cluster (doubly distributed) has barely been studied. In this work we propose two doubly distributed optimization algorithms. The first one falls under the umbrella of distributed dual coordinate ascent methods, while the second one belongs to the class of stochastic gradient/coordinate descent hybrid methods. We conduct numerical experiments in Spark using real-world and simulated data sets and study the scaling properties of our methods. Our empirical evaluation of the proposed algorithms demonstrates the out-performance of a block distributed ADMM method, which, to the best of our knowledge is the only other existing doubly distributed optimization algorithm.

View on arXiv
Comments on this paper