A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group

Many geometric estimation problems take the form of synchronization over the special Euclidean group: estimate the values of a set of poses given noisy measurements of a subset of their pairwise relative transforms. This problem is typically formulated as a maximum-likelihood estimation that requires solving a nonconvex nonlinear program, which is computationally intractable in general. Nevertheless, in this paper we present an algorithm that is able to efficiently recover certifiably globally optimal solutions of this estimation problem in a non-adversarial noise regime. The crux of our approach is the development of a semidefinite relaxation of the maximum-likelihood estimation whose minimizer provides the exact MLE so long as the magnitude of the noise corrupting the available measurements falls below a certain critical threshold; furthermore, whenever exactness obtains, it is possible to verify this fact a posteriori, thereby certifying the optimality of the recovered estimate. We develop a specialized optimization scheme for solving large-scale instances of this semidefinite relaxation by exploiting its low-rank, geometric, and graph-theoretic structure to reduce it to an equivalent optimization problem on a low-dimensional Riemannian manifold, and then design a Riemannian truncated-Newton trust-region method to solve this reduction efficiently. We combine this fast optimization approach with a simple rounding procedure to produce our algorithm, SE-Sync. Experimental evaluation on a variety of simulated and real-world pose-graph SLAM datasets shows that SE-Sync is capable of recovering globally optimal solutions when the available measurements are corrupted by noise up to an order of magnitude greater than that typically encountered in robotics applications, and does so at a computational cost that scales comparably with that of direct Newton-type local search techniques.
View on arXiv