ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.00350
41
0
v1v2 (latest)

Adversarial Influence Maximization

1 November 2016
Justin Khim
Varun Jog
Po-Ling Loh
ArXiv (abs)PDFHTML
Abstract

We consider the problem of influence maximization in fixed networks for contagion models in an adversarial setting. The goal is to select an optimal set of nodes to seed the influence process, such that the number of influenced nodes at the conclusion of the campaign is as large as possible. We formulate the problem as a repeated game between a player and adversary, where the adversary specifies the edges along which the contagion may spread, and the player chooses sets of nodes to influence in an online fashion. We establish upper and lower bounds on the minimax pseudo-regret in both undirected and directed networks.

View on arXiv
Comments on this paper