ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.01900
77
31
v1v2 (latest)

Optimal rates for the regularized learning algorithms under general source condition

7 November 2016
Abhishake Rastogi
Sivananthan Sampath
ArXiv (abs)PDFHTML
Abstract

We consider the learning algorithms under general source condition with the polynomial decay of the eigenvalues of the integral operator in vector-valued function setting. We discuss the upper convergence rates of Tikhonov regularizer under general source condition corresponding to increasing monotone index function. The convergence issues are studied for general regularization schemes by using the concept of operator monotone index functions in minimax setting. Further we also address the minimum possible error for any learning algorithm.

View on arXiv
Comments on this paper