ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.04228
12
9

Learning Sparse, Distributed Representations using the Hebbian Principle

14 November 2016
Aseem Wadhwa
Upamanyu Madhow
ArXivPDFHTML
Abstract

The "fire together, wire together" Hebbian model is a central principle for learning in neuroscience, but surprisingly, it has found limited applicability in modern machine learning. In this paper, we take a first step towards bridging this gap, by developing flavors of competitive Hebbian learning which produce sparse, distributed neural codes using online adaptation with minimal tuning. We propose an unsupervised algorithm, termed Adaptive Hebbian Learning (AHL). We illustrate the distributed nature of the learned representations via output entropy computations for synthetic data, and demonstrate superior performance, compared to standard alternatives such as autoencoders, in training a deep convolutional net on standard image datasets.

View on arXiv
Comments on this paper