ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.05780
113
126
v1v2v3v4 (latest)

Gap Safe screening rules for sparsity enforcing penalties

17 November 2016
Eugène Ndiaye
Olivier Fercoq
Alexandre Gramfort
Joseph Salmon
ArXiv (abs)PDFHTML
Abstract

In high dimensional regression settings, sparsity enforcing penalties have proved useful to regularize the data-fitting term. A recently introduced technique called screening rules propose to ignore some variables in the optimization leveraging the expected sparsity of the solutions and consequently leading to faster solvers. When the procedure is guaranteed not to discard variables wrongly the rules are said to be safe. In this work, we propose a unifying framework for generalized linear models regularized with standard sparsity enforcing penalties such as ℓ1\ell_1ℓ1​ or ℓ1/ℓ2\ell_1/\ell_2ℓ1​/ℓ2​ norms. Our technique allows to discard safely more variables than previously considered safe rules, particularly for low regularization parameters. Our proposed Gap Safe rules (so called because they rely on duality gap computation) can cope with any iterative solver but are particularly well suited to (block) coordinate descent methods. Applied to many standard learning tasks, Lasso, Sparse-Group Lasso, multi-task Lasso, binary and multinomial logistic regression, etc., we report significant speed-ups compared to previously proposed safe rules on all tested datasets.

View on arXiv
Comments on this paper