ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.06649
71
66
v1v2v3 (latest)

High-Dimensional Bayesian Regularised Regression with the BayesReg Package

21 November 2016
E. Makalic
Daniel F. Schmidt
ArXiv (abs)PDFHTML
Abstract

Bayesian penalized regression techniques, such as the Bayesian lasso and the Bayesian horseshoe estimator, have recently received a significant amount of attention in the statistics literature. However, software implementing state-of-the-art Bayesian penalized regression, outside of general purpose Markov chain Monte Carlo platforms such as STAN, is relatively rare. This paper introduces bayesreg, a new toolbox for fitting Bayesian penalized regression models with continuous shrinkage prior densities. The toolbox features Bayesian linear regression with Gaussian or heavy-tailed error models and Bayesian logistic regression with ridge, lasso, horseshoe and horseshoe+++ estimators. The toolbox is free, open-source and available for use with the MATLAB and R numerical platforms.

View on arXiv
Comments on this paper