ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.10041
20
2

Subsampled online matrix factorization with convergence guarantees

30 November 2016
A. Mensch
Julien Mairal
Gaël Varoquaux
Bertrand Thirion
ArXiv (abs)PDFHTML
Abstract

We present a matrix factorization algorithm that scales to input matrices that are large in both dimensions (i.e., that contains morethan 1TB of data). The algorithm streams the matrix columns while subsampling them, resulting in low complexity per iteration andreasonable memory footprint. In contrast to previous online matrix factorization methods, our approach relies on low-dimensional statistics from past iterates to control the extra variance introduced by subsampling. We present a convergence analysis that guarantees us to reach a stationary point of the problem. Large speed-ups can be obtained compared to previous online algorithms that do not perform subsampling, thanks to the feature redundancy that often exists in high-dimensional settings.

View on arXiv
Comments on this paper