ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00560
181
34
v1v2 (latest)

Zero-Shot Learning posed as a Missing Data Problem

2 December 2016
Bo Zhao
Botong Wu
Tianfu Wu
Yizhou Wang
    VLM
ArXiv (abs)PDFHTML
Abstract

This paper presents a method of zero-shot learning (ZSL) which poses ZSL as the missing data problem, rather than the missing label problem. Specifically, most existing ZSL methods focus on learning mapping functions from the image feature space to the label embedding space. Whereas, the proposed method explores a simple yet effective transductive framework in the reverse way \--- our method estimates data distribution of unseen classes in the image feature space by transferring knowledge from the label embedding space. In experiments, our method outperforms the state-of-the-art on two popular datasets.

View on arXiv
Comments on this paper