ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.06919
31
28

A Statistical Approach to Continuous Self-Calibrating Eye Gaze Tracking for Head-Mounted Virtual Reality Systems

20 December 2016
Subarna Tripathi
B. Guenter
ArXiv (abs)PDFHTML
Abstract

We present a novel, automatic eye gaze tracking scheme inspired by smooth pursuit eye motion while playing mobile games or watching virtual reality contents. Our algorithm continuously calibrates an eye tracking system for a head mounted display. This eliminates the need for an explicit calibration step and automatically compensates for small movements of the headset with respect to the head. The algorithm finds correspondences between corneal motion and screen space motion, and uses these to generate Gaussian Process Regression models. A combination of those models provides a continuous mapping from corneal position to screen space position. Accuracy is nearly as good as achieved with an explicit calibration step.

View on arXiv
Comments on this paper