ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.09089
49
10
v1v2v3v4 (latest)

What Makes Audio Event Detection Harder than Classification?

29 December 2016
Huy P Phan
P. Koch
Fabrice Katzberg
M. Maass
Radoslaw Mazur
Ian Mcloughlin
Alfred Mertins
ArXiv (abs)PDFHTML
Abstract

There is a common observation that audio event classification is easier to deal with than detection. So far, this observation has been accepted as a fact and we lack of a careful analysis. In this paper, we reason the rationale behind this fact and, more importantly, leverage them to benefit the audio event detection task. We present an improved detection pipeline in which a verification step is appended to augment a detection system. This step employs a high-quality event classifier to postprocess the benign event hypotheses outputted by the detection system and reject false alarms. To demonstrate the effectiveness of the proposed pipeline, we implement and pair up different event detectors based on the most common detection schemes and various event classifiers, ranging from the standard bag-of-words model to the state-of-the-art bank-of-regressors one. Experimental results on the ITC-Irst dataset show significant improvements to detection performance. More importantly, these improvements are consistent for all detector-classifier combinations.

View on arXiv
Comments on this paper