ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.09438
6
0

Automatic Discoveries of Physical and Semantic Concepts via Association Priors of Neuron Groups

30 December 2016
Shuai Li
K. Jia
Xiaogang Wang
ArXivPDFHTML
Abstract

The recent successful deep neural networks are largely trained in a supervised manner. It {\it associates} complex patterns of input samples with neurons in the last layer, which form representations of {\it concepts}. In spite of their successes, the properties of complex patterns associated a learned concept remain elusive. In this work, by analyzing how neurons are associated with concepts in supervised networks, we hypothesize that with proper priors to regulate learning, neural networks can automatically associate neurons in the intermediate layers with concepts that are aligned with real world concepts, when trained only with labels that associate concepts with top level neurons, which is a plausible way for unsupervised learning. We develop a prior to verify the hypothesis and experimentally find the proposed prior help neural networks automatically learn both basic physical concepts at the lower layers, e.g., rotation of filters, and highly semantic concepts at the higher layers, e.g., fine-grained categories of an entry-level category.

View on arXiv
Comments on this paper