ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.01037
95
97
v1v2 (latest)

Tensor-on-tensor regression

4 January 2017
E. Lock
ArXiv (abs)PDFHTMLGithub (20★)
Abstract

We propose a framework for the linear prediction of a multi-way array (i.e., a tensor) from another multi-way array of arbitrary dimension, using the contracted tensor product. This framework generalizes several existing approaches, including methods to predict a scalar outcome from a tensor, a matrix from a matrix, or a tensor from a scalar. We describe an approach that exploits the multiway structure of both the predictors and the outcomes by restricting the coefficients to have reduced CP-rank. We propose a general and efficient algorithm for penalized least-squares estimation, which allows for a ridge (L_2) penalty on the coefficients. The objective is shown to give the mode of a Bayesian posterior, which motivates a Gibbs sampling algorithm for inference. We illustrate the approach with an application to facial image data. An R package is available at https://github.com/lockEF/MultiwayRegression .

View on arXiv
Comments on this paper