ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.04831
24
225

Equivalence of restricted Boltzmann machines and tensor network states

17 January 2017
Martín Arjovsky
Song Cheng
Haidong Xie
Léon Bottou
Tao Xiang
ArXivPDFHTML
Abstract

The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the probability distributions of a variety of input data including natural images, speech signals, and customer ratings, etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely, we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given architectures. Revealing these general and constructive connections can cross-fertilize both deep learning and quantum many-body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously quantify the expressive power of RBM on complex data sets. Insights into TNS and its entanglement capacity can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical simulations.

View on arXiv
Comments on this paper