ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.05818
17
35

Fusion of Heterogeneous Data in Convolutional Networks for Urban Semantic Labeling (Invited Paper)

20 January 2017
Nicolas Audebert
Bertrand Le Saux
Sébastien Lefèvre
ArXivPDFHTML
Abstract

In this work, we present a novel module to perform fusion of heterogeneous data using fully convolutional networks for semantic labeling. We introduce residual correction as a way to learn how to fuse predictions coming out of a dual stream architecture. Especially, we perform fusion of DSM and IRRG optical data on the ISPRS Vaihingen dataset over a urban area and obtain new state-of-the-art results.

View on arXiv
Comments on this paper