33
8

Linear convergence of SDCA in statistical estimation

Abstract

In this paper, we consider stochastic dual coordinate (SDCA) {\em without} strongly convex assumption or convex assumption. We show that SDCA converges linearly under mild conditions termed restricted strong convexity. This covers a wide array of popular statistical models including Lasso, group Lasso, and logistic regression with 1\ell_1 regularization, corrected Lasso and linear regression with SCAD regularizer. This significantly improves previous convergence results on SDCA for problems that are not strongly convex. As a by product, we derive a dual free form of SDCA that can handle general regularization term, which is of interest by itself.

View on arXiv
Comments on this paper