ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.01983
11
489

Face Aging With Conditional Generative Adversarial Networks

7 February 2017
G. Antipov
M. Baccouche
J. Dugelay
    GAN
    CVBM
ArXivPDFHTML
Abstract

It has been recently shown that Generative Adversarial Networks (GANs) can produce synthetic images of exceptional visual fidelity. In this work, we propose the GAN-based method for automatic face aging. Contrary to previous works employing GANs for altering of facial attributes, we make a particular emphasize on preserving the original person's identity in the aged version of his/her face. To this end, we introduce a novel approach for "Identity-Preserving" optimization of GAN's latent vectors. The objective evaluation of the resulting aged and rejuvenated face images by the state-of-the-art face recognition and age estimation solutions demonstrate the high potential of the proposed method.

View on arXiv
Comments on this paper