We analyze the problem of maximum likelihood estimation for Gaussian distributions that are multivariate totally positive of order two (MTP2). By exploiting connections to phylogenetics and single-linkage clustering, we give a simple proof that the maximum likelihood estimator (MLE) for such distributions exists based on at least 2 observations, irrespective of the underlying dimension. Slawski and Hein, who first proved this result, also provided empirical evidence showing that the MTP2 constraint serves as an implicit regularizer and leads to sparsity in the estimated inverse covariance matrix, determining what we name the ML graph. We show that the maximum weight spanning forest (MWSF) of the empirical correlation matrix is a spanning forest of the ML graph. In addition, we show that we can find an upper bound for the ML graph by adding edges to the MSWF corresponding to correlations in excess of those explained by the forest. This also gives new theoretical results in the study of inverse M-matrices. We provide globally convergent coordinate descent algorithms for calculating the MLE under the MTP2 constraint which are structurally similar to iterative proportional scaling. We conclude the paper with a discussion of signed MTP2 distributions.
View on arXiv