ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.05683
41
5
v1v2 (latest)

SAGA and Restricted Strong Convexity

19 February 2017
Chao Qu
Yan Li
Huan Xu
ArXiv (abs)PDFHTML
Abstract

SAGA is a fast incremental gradient method on the finite sum problem and its effectiveness has been tested on a vast of applications. In this paper, we analyze SAGA on a class of non-strongly convex and non-convex statistical problem such as Lasso, group Lasso, Logistic regression with ℓ1\ell_1ℓ1​ regularization, linear regression with SCAD regularization and Correct Lasso. We prove that SAGA enjoys the linear convergence rate up to the statistical estimation accuracy, under the assumption of restricted strong convexity (RSC). It significantly extends the applicability of SAGA in convex and non-convex optimization.

View on arXiv
Comments on this paper