The United States spends more than 1BeachyearoninitiativessuchastheAmericanCommunitySurvey(ACS),alabor−intensivedoor−to−doorstudythatmeasuresstatisticsrelatingtorace,gender,education,occupation,unemployment,andotherdemographicfactors.Althoughacomprehensivesourceofdata,thelagbetweendemographicchangesandtheirappearanceintheACScanexceedhalfadecade.Asdigitalimagerybecomesubiquitousandmachinevisiontechniquesimprove,automateddataanalysismayprovideacheaperandfasteralternative.Here,wepresentamethodthatdeterminessocioeconomictrendsfrom50millionimagesofstreetscenes,gatheredin200AmericancitiesbyGoogleStreetViewcars.Usingdeeplearning−basedcomputervisiontechniques,wedeterminedthemake,model,andyearofallmotorvehiclesencounteredinparticularneighborhoods.Datafromthiscensusofmotorvehicles,whichenumerated22Mautomobilesintotal(8toaccuratelyestimateincome,race,education,andvotingpatterns,withsingle−precinctresolution.(TheaverageUSprecinctcontainsapproximately1000people.)Theresultingassociationsaresurprisinglysimpleandpowerful.Forinstance,ifthenumberofsedansencounteredduringa15−minutedrivethroughacityishigherthanthenumberofpickuptrucks,thecityislikelytovoteforaDemocratduringthenextPresidentialelection(88otherwise,itislikelytovoteRepublican(82automatedsystemsformonitoringdemographictrendsmayeffectivelycomplementlabor−intensiveapproaches,withthepotentialtodetecttrendswithfinespatialresolution,inclosetorealtime.