274
v1v2v3 (latest)

Robustness to Adversarial Examples through an Ensemble of Specialists

International Conference on Learning Representations (ICLR), 2017
Abstract

We are proposing to use an ensemble of diverse specialists, where speciality is defined according to the confusion matrix. Indeed, we observed that for adversarial instances originating from a given class, labeling tend to be done into a small subset of (incorrect) classes. Therefore, we argue that an ensemble of specialists should be better able to identify and reject fooling instances, with a high entropy (i.e., disagreement) over the decisions in the presence of adversaries. Experimental results obtained confirm that interpretation, opening a way to make the system more robust to adversarial examples through a rejection mechanism, rather than trying to classify them properly at any cost.

View on arXiv
Comments on this paper