ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.07013
139
60
v1v2 (latest)

Learning Hawkes Processes from Short Doubly-Censored Event Sequences

22 February 2017
Hongteng Xu
Dixin Luo
H. Zha
    AI4TS
ArXiv (abs)PDFHTML
Abstract

Many real-world applications require robust algorithms to learn point processes based on a type of incomplete data --- the so-called short doubly-censored (SDC) event sequences. We study this critical problem of quantitative asynchronous event sequence analysis under the framework of Hawkes processes by leveraging the idea of data synthesis. Given SDC event sequences observed in a variety of time intervals, we propose a sampling-stitching data synthesis method --- sampling predecessors and successors for each SDC event sequence from potential candidates and stitching them together to synthesize long training sequences. The rationality and the feasibility of our method are discussed in terms of arguments based on likelihood. Experiments on both synthetic and real-world data demonstrate that the proposed data synthesis method improves learning results indeed for both time-invariant and time-varying Hawkes processes.

View on arXiv
Comments on this paper