ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.07664
11
0

How ConvNets model Non-linear Transformations

24 February 2017
Dipan K. Pal
Marios Savvides
ArXivPDFHTML
Abstract

In this paper, we theoretically address three fundamental problems involving deep convolutional networks regarding invariance, depth and hierarchy. We introduce the paradigm of Transformation Networks (TN) which are a direct generalization of Convolutional Networks (ConvNets). Theoretically, we show that TNs (and thereby ConvNets) are can be invariant to non-linear transformations of the input despite pooling over mere local translations. Our analysis provides clear insights into the increase in invariance with depth in these networks. Deeper networks are able to model much richer classes of transformations. We also find that a hierarchical architecture allows the network to generate invariance much more efficiently than a non-hierarchical network. Our results provide useful insight into these three fundamental problems in deep learning using ConvNets.

View on arXiv
Comments on this paper