ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08231
11
9

Low-Precision Batch-Normalized Activations

27 February 2017
Benjamin Graham
    MQ
ArXivPDFHTML
Abstract

Artificial neural networks can be trained with relatively low-precision floating-point and fixed-point arithmetic, using between one and 16 bits. Previous works have focused on relatively wide-but-shallow, feed-forward networks. We introduce a quantization scheme that is compatible with training very deep neural networks. Quantizing the network activations in the middle of each batch-normalization module can greatly reduce the amount of memory and computational power needed, with little loss in accuracy.

View on arXiv
Comments on this paper