ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08402
177
3
v1v2 (latest)

Latent Correlation Gaussian Processes

Asian Conference on Machine Learning (ACML), 2017
27 February 2017
Sami Remes
Markus Heinonen
Samuel Kaski
ArXiv (abs)PDFHTML
Abstract

We introduce a novel kernel that models input-dependent couplings across multiple latent processes. The pairwise kernel measures covariance both along inputs and across different latent signals in a mutually-dependent fashion. The latent correlation Gaussian process (LCGP) model combines these non-stationary latent components into multiple outputs by an input-dependent mixing matrix. Probit classification and support for multiple observation sets are derived by Variational Bayesian inference. Results on several datasets indicate that the LCGP model can recover the correlations between latent signals while simultaneously achieving state-of-the-art performance. We highlight the latent covariances with an EEG classification dataset where latent brain processes and their couplings simultaneously emerge from the model.

View on arXiv
Comments on this paper