ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08546
13
61

Optimal rates of estimation for multi-reference alignment

27 February 2017
Afonso S. Bandeira
Philippe Rigollet
Jonathan Niles-Weed
ArXivPDFHTML
Abstract

In this paper, we establish optimal rates of adaptive estimation of a vector in the multi-reference alignment model, a problem with important applications in fields such as signal processing, image processing, and computer vision, among others. We describe how this model can be viewed as a multivariate Gaussian mixture model under the constraint that the centers belong to the orbit of a group. This enables us to derive matching upper and lower bounds that feature an interesting dependence on the signal-to-noise ratio of the model. Both upper and lower bounds are articulated around a tight local control of Kullback-Leibler divergences that showcases the central role of moment tensors in this problem.

View on arXiv
Comments on this paper