ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00311
21
9

Multi-stage Neural Networks with Single-sided Classifiers for False Positive Reduction and its Evaluation using Lung X-ray CT Images

1 March 2017
M. Sakamoto
H. Nakano
Kun Zhao
Taro Sekiyama
ArXivPDFHTML
Abstract

Lung nodule classification is a class imbalanced problem because nodules are found with much lower frequency than non-nodules. In the class imbalanced problem, conventional classifiers tend to be overwhelmed by the majority class and ignore the minority class. We therefore propose cascaded convolutional neural networks to cope with the class imbalanced problem. In the proposed approach, multi-stage convolutional neural networks that perform as single-sided classifiers filter out obvious non-nodules. Successively, a convolutional neural network trained with a balanced data set calculates nodule probabilities. The proposed method achieved the sensitivity of 92.4\% and 94.5% at 4 and 8 false positives per scan in Free Receiver Operating Characteristics (FROC) curve analysis, respectively.

View on arXiv
Comments on this paper