ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00786
18
2

A Generic Online Parallel Learning Framework for Large Margin Models

2 March 2017
Shuming Ma
Xu Sun
    FedML
ArXivPDFHTML
Abstract

To speed up the training process, many existing systems use parallel technology for online learning algorithms. However, most research mainly focus on stochastic gradient descent (SGD) instead of other algorithms. We propose a generic online parallel learning framework for large margin models, and also analyze our framework on popular large margin algorithms, including MIRA and Structured Perceptron. Our framework is lock-free and easy to implement on existing systems. Experiments show that systems with our framework can gain near linear speed up by increasing running threads, and with no loss in accuracy.

View on arXiv
Comments on this paper