ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01289
11
18

Instance Flow Based Online Multiple Object Tracking

3 March 2017
Sebastian Bullinger
C. Bodensteiner
Michael Arens
    VOT
ArXivPDFHTML
Abstract

We present a method to perform online Multiple Object Tracking (MOT) of known object categories in monocular video data. Current Tracking-by-Detection MOT approaches build on top of 2D bounding box detections. In contrast, we exploit state-of-the-art instance aware semantic segmentation techniques to compute 2D shape representations of target objects in each frame. We predict position and shape of segmented instances in subsequent frames by exploiting optical flow cues. We define an affinity matrix between instances of subsequent frames which reflects locality and visual similarity. The instance association is solved by applying the Hungarian method. We evaluate different configurations of our algorithm using the MOT 2D 2015 train dataset. The evaluation shows that our tracking approach is able to track objects with high relative motions. In addition, we provide results of our approach on the MOT 2D 2015 test set for comparison with previous works. We achieve a MOTA score of 32.1.

View on arXiv
Comments on this paper