Network resource allocation shows revived popularity in the era of data deluge and information explosion. Existing stochastic optimization approaches fall short in attaining a desirable cost-delay tradeoff. Recognizing the central role of Lagrange multipliers in network resource allocation, a novel learn-and-adapt stochastic dual gradient (LA-SDG) method is developed in this paper to learn the sample-optimal Lagrange multiplier from historical data, and accordingly adapt the upcoming resource allocation strategy. Remarkably, LA-SDG only requires just an extra sample (gradient) evaluation relative to the celebrated stochastic dual gradient (SDG) method. LA-SDG can be interpreted as a foresighted learning scheme with an eye on the future, or, a modified heavy-ball iteration from an optimization viewpoint. It is established - both theoretically and empirically - that LA-SDG markedly improves the cost-delay tradeoff over state-of-the-art allocation schemes.
View on arXiv