ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01968
102
357

Max-value Entropy Search for Efficient Bayesian Optimization

6 March 2017
Zi Wang
Stefanie Jegelka
ArXivPDFHTML
Abstract

Entropy Search (ES) and Predictive Entropy Search (PES) are popular and empirically successful Bayesian Optimization techniques. Both rely on a compelling information-theoretic motivation, and maximize the information gained about the arg⁡max⁡\arg\maxargmax of the unknown function; yet, both are plagued by the expensive computation for estimating entropies. We propose a new criterion, Max-value Entropy Search (MES), that instead uses the information about the maximum function value. We show relations of MES to other Bayesian optimization methods, and establish a regret bound. We observe that MES maintains or improves the good empirical performance of ES/PES, while tremendously lightening the computational burden. In particular, MES is much more robust to the number of samples used for computing the entropy, and hence more efficient for higher dimensional problems.

View on arXiv
Comments on this paper