76
303

Learning Active Learning from Real and Synthetic Data

Abstract

In this paper, we suggest a novel data-driven approach to active learning: Learning Active Learning (LAL). The key idea behind LAL is to train a regressor that predicts the expected error reduction for a potential sample in a particular learning state. By treating the query selection procedure as a regression problem we are not restricted to dealing with existing AL heuristics; instead, we learn strategies based on experience from previous active learning experiments. We show that LAL can be learnt from a simple artificial 2D dataset and yields strategies that work well on real data from a wide range of domains. Moreover, if some domain-specific samples are available to bootstrap active learning, the LAL strategy can be tailored for a particular problem.

View on arXiv
Comments on this paper