ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.03470
31
6

Deep Radial Kernel Networks: Approximating Radially Symmetric Functions with Deep Networks

9 March 2017
B. McCane
Lech Szymanski
ArXivPDFHTML
Abstract

We prove that a particular deep network architecture is more efficient at approximating radially symmetric functions than the best known 2 or 3 layer networks. We use this architecture to approximate Gaussian kernel SVMs, and subsequently improve upon them with further training. The architecture and initial weights of the Deep Radial Kernel Network are completely specified by the SVM and therefore sidesteps the problem of empirically choosing an appropriate deep network architecture.

View on arXiv
Comments on this paper