ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04105
13
307

Combining Residual Networks with LSTMs for Lipreading

12 March 2017
Themos Stafylakis
Georgios Tzimiropoulos
    VLM
ArXivPDFHTML
Abstract

We propose an end-to-end deep learning architecture for word-level visual speech recognition. The system is a combination of spatiotemporal convolutional, residual and bidirectional Long Short-Term Memory networks. We train and evaluate it on the Lipreading In-The-Wild benchmark, a challenging database of 500-size target-words consisting of 1.28sec video excerpts from BBC TV broadcasts. The proposed network attains word accuracy equal to 83.0, yielding 6.8 absolute improvement over the current state-of-the-art, without using information about word boundaries during training or testing.

View on arXiv
Comments on this paper