ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04615
78
300

Recasting Residual-based Local Descriptors as Convolutional Neural Networks: an Application to Image Forgery Detection

14 March 2017
D. Cozzolino
Giovanni Poggi
L. Verdoliva
ArXivPDFHTML
Abstract

Local descriptors based on the image noise residual have proven extremely effective for a number of forensic applications, like forgery detection and localization. Nonetheless, motivated by promising results in computer vision, the focus of the research community is now shifting on deep learning. In this paper we show that a class of residual-based descriptors can be actually regarded as a simple constrained convolutional neural network (CNN). Then, by relaxing the constraints, and fine-tuning the net on a relatively small training set, we obtain a significant performance improvement with respect to the conventional detector.

View on arXiv
Comments on this paper