ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04990
83
21

Neural Programming by Example

15 March 2017
Chengxun Shu
Hongyu Zhang
ArXiv (abs)PDFHTML
Abstract

Programming by Example (PBE) targets at automatically inferring a computer program for accomplishing a certain task from sample input and output. In this paper, we propose a deep neural networks (DNN) based PBE model called Neural Programming by Example (NPBE), which can learn from input-output strings and induce programs that solve the string manipulation problems. Our NPBE model has four neural network based components: a string encoder, an input-output analyzer, a program generator, and a symbol selector. We demonstrate the effectiveness of NPBE by training it end-to-end to solve some common string manipulation problems in spreadsheet systems. The results show that our model can induce string manipulation programs effectively. Our work is one step towards teaching DNN to generate computer programs.

View on arXiv
Comments on this paper