ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.08676
36
2

Statistical and Computational Tradeoff in Genetic Algorithm-Based Estimation

25 March 2017
Manuel Rizzo
F. Battaglia
ArXiv (abs)PDFHTML
Abstract

When a Genetic Algorithm (GA), or a stochastic algorithm in general, is employed in a statistical problem, the obtained result is affected by both variability due to sampling, that refers to the fact that only a sample is observed, and variability due to the stochastic elements of the algorithm. This topic can be easily set in a framework of statistical and computational tradeoff question, crucial in recent problems, for which statisticians must carefully set statistical and computational part of the analysis, taking account of some resource or time constraints. In the present work we analyze estimation problems tackled by GAs, for which variability of estimates can be decomposed in the two sources of variability, considering some constraints in the form of cost functions, related to both data acquisition and runtime of the algorithm. Simulation studies will be presented to discuss the statistical and computational tradeoff question.

View on arXiv
Comments on this paper