ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.09393
28
73

Mixture of Counting CNNs: Adaptive Integration of CNNs Specialized to Specific Appearance for Crowd Counting

28 March 2017
Shohei Kumagai
Kazuhiro Hotta
Takio Kurita
ArXivPDFHTML
Abstract

This paper proposes a crowd counting method. Crowd counting is difficult because of large appearance changes of a target which caused by density and scale changes. Conventional crowd counting methods generally utilize one predictor (e,g., regression and multi-class classifier). However, such only one predictor can not count targets with large appearance changes well. In this paper, we propose to predict the number of targets using multiple CNNs specialized to a specific appearance, and those CNNs are adaptively selected according to the appearance of a test image. By integrating the selected CNNs, the proposed method has the robustness to large appearance changes. In experiments, we confirm that the proposed method can count crowd with lower counting error than a CNN and integration of CNNs with fixed weights. Moreover, we confirm that each predictor automatically specialized to a specific appearance.

View on arXiv
Comments on this paper